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It all started with an email...

Leopoldo Motta Teixeira 5 June 2023, 16:30
W@ Invitation as Keynote Speaker at VAMOS 2024, Bern, Feb 7-9
To: Maxime CORDY, Cc: Marianne Huchard, Timo Kehrer

Details

Dear Maxime,

On behalf of the committees of the 18th International Working Conference on Variability Modelling of Software-Intensive Systems (VaMoS 2024), we are very pleased to invite you
to deliver a keynote speech at the event.

We are familiar with your previous work on variability analysis and verification, and would like to know whether you could provide a perspective on the interaction of variability,
testing and machine learning, given that you have been working around these topics in the recent years, and they directly relate to the VaMoS topics.

VaMoS 2024 will be held Feb 7-9, in Bern, Switzerland (https://vamos2024.inf.unibe.ch/).

If you accept our invitation, your keynote will be scheduled on either of the conference days (exact day to be confirmed). You are, of course, also invited to attend the other
sessions during the week. All your travel expenses will be covered by VaMoS and you will get a free registration to the whole event.

Over the last years, VaMoS has already counted on renowned scientists or entrepreneurs as keynote speakers, such as Yves Bossu, Marsha Chechik, Mathieu Acher, Alfonso
Pierantonio, Manuel Wimmer, Herwig Schreiner, Andrzej Wasowski, Nelly Bencomo, Norbert Siegmund and Matthias Galster.

We hope you will be interested and available for coming to Bern. It will be our great pleasure to have you as one of our keynote speakers.
Best regards,

Timo Kehrer, Marianne Huchard, Leopoldo Teixeira
VaMoS 2024 General chair and PC chairs
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Verification of variability-intensive systems

Instead of:

(a) Basic vending machine
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close
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Uniform random sampling

Given a feature model ... sample a valid variant (a solution to

(a Boolean formula)... the formula) with uniform probability:

. . {v, b, s} {v, b, t} {v, b, s, t}
VendingMachine {V, b, s, f} {V, b, t, f} {V, b, s, t, f}
{v,b,s,c} {v, b, t, c} {v,b,s,t,c}
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Deep learning: a new world of possibilities

Deep Fake Nicolas Cage




The Problem

Different aspects of Trustworthy Al

I-_____________1

Privacy Robustness |
37% of costs of Al conformity assessment is |
estimated to come from robustness by EU |
| | | I | | | I | el
Fairness Data Anomalies

Explainability




The Problem

Robustness

“the degree to which a model’s performance changes when confronted to data unseen during training”

“Natural Robustness”

Accuracy once running in
production

®O®
aflo

Distribution Drift

“..an evolution of data that
invalidates the data model. It
happens when the statistical
properties of the target
variable, which the model is
trying to predict, change over
time in unforeseen ways.”

Security Threats

Evasion/adversarial attacks
Inference attacks

Poisoning attacks

Model theft

Etc.




Machine learning robustness (evasion attacks)

Original example Small adversarial noise Adversarial example

What humans still see

ML predicts:
“Panda”
(80% confidence)

What ML predicts: “Gibbon”
(99% confidence)

"Explaining and Harnessing Adversarial Examples", Goodfelow et al., ICLR 2015. Gibbon



Machine learning robustness (evasion attacks)

PO ‘:l‘> “the boy looked out at

the horizon”

x 0.001

“later we simply let
life proceed in its

'::> own direction toward
its own fate”

Figure 1. [Illustration of our attack: given any waveform, adding a small
perturbation makes the result transcribe as any desired target phrase.

Carlini, Nicholas, and David Wagner. "Audio adversarial examples: Targeted attacks on speech-to-text."
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018.



Machine learning robustness (evasion attacks)

Journal of Information Security and Applications 60 (2021) 102874

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

Adversarial attacks by attaching noise markers on the face against deep face =~ &
Crowd face recognition system aW S recognition

Gwonsang Ryu?, Hosung Park ®, Daeseon Choi ®*

2 Department of Software Convergence, Graduate School of Soongsil University, Seoul, 07027, South Korea
b Department of Cyber Security and Police, Busan University of Foreign Studies, Busan, 46234, South Korea
¢ Department of Software, Soongsil University, Seoul, 07027, South Korea

ARTICLE INFO ABSTRACT




Machine learning robustness (evasion attacks)
Automated decision software in finance

Transaction 1

Transaction 2 ]
+ T= Transaction Feature vector
Transaction ... n+1 [f1, f2, f3, f4, 5]

Transaction n
| |

|
Incoming
Client history transaction Feature vector

ML Model

/ N\

Accept Reject
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Machine learning robustness (evasion attacks)
Automated decision software in finance

ML Model
Transaction 1

Transaction 2 ]
+ T= Transaction Feature vector
Transaction ... n+1 [f1, f2, f3, f4, 5]

Transaction n

|
Incoming / \

—
—

Client history transaction Feature vector Accept

Evasion attack goal
Make the smallest change in transaction n+1
Such that the decision changes from reject to accept

Reject
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Intersecting variability, machine learning and testing?

We are familiar with your previous work on variability analysis and verification, and would like to know whether you could provide a perspective on the interaction of variability,
testing and machine learning, given that you have been working around these topics in the recent years, and they directly relate to the VaMoS topics.

13



Intersecting variability, machine learning and testing?

Early-stage research ahead!

Please change room or come back later for solidly established research ©

14



Reusability, adaptability, and exploration (in ML)

15



Reusability, adaptability, and exploration (in ML)
Transfer learning and fine-tuning

...........................................................................................................................................
.

CNN
Pre-trained weights =
\ 1000-Output

...........................................................................................................................................

Luis Enrique Silva Vogado et al. "Diagnosis of Leukaemia in Blood Slides Based on a Fine-Tuned and Highly Generalisable Deep Learning Model”, Sensors 21(9):2989.
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Reusability, adaptability, and exploration (in ML)
Multi-task learning

Shared
Layers

Task-specific
Layers

| ||| Task1

y

x —p . O —p - Task 2

Bd Task 3

Kim-Han Thung and Chong-Yaw Wee. “A brief review on multi-task learning”, Multimedia Tools and Applications. Volume 77, pages 29705-29725, (2018).



Reusability, adaptability, and exploration (in ML)
Foundation Models

Machine Learnin ! @)
gg Deeh Foundation Models

Learning
Emergence of... “how Features Functionalities
Homogenization of... learning algorithms architectures  models

https://blogs.nvidia.com/blog/what-are-foundation-models/
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Reusability, adaptability, and exploration (in ML)

Foundation Models

Data

Text I l

')

g ’/ Images
)

Speech/\/\/v\} *@yaining

" Structured
®  Data

_
—

3D Signals n

—

Tasks
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N Question
&b Answering /' .

P ’ Sentiment
‘ §' ,) Analysis
\|/ ~
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. Adaptation '
Foundation g Image
Model ’ ﬂ Captioning . o
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N Object
BV, | . i
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https://blogs.nvidia.com/blog/what-are-foundation-models/
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Reusability, adaptability, and exploration (in ML)

...................................................................................................................................................................

Data acquisition

and understanding Deployment

Containers
I )
i i
Reporting

m

' oyl Applications
U =

e, "9

Databases

% AutoML




Automated Search for Configurations of
Convolutional Neural Network Architectures

Salah Ghamizi, Maxime Cordy,
Mike Papadakis, Yves Le Traon

https://github.com/yamizi/FeatureNet

arls 2019 "

3 rdSystems and Software
Product Line Conference



AutoML: exponential growth since 2017!

Google’s AutoML lets you train
custom machine learning models
without having to code

GOOGLE'S LEARNING
SOFTWARE LEARNS T0 WRITE
LEARNING SOFTWARE

Google’s self-training Al turns
coders into machine-learning
masters

Frederic Lardinois @fredericl / Jan 17,2018 ] comment

Billionaires

Google has started using Al to build more
advanced Al

N 7
<l
Crire . . . . o - . = }ﬂ—
Masgavest bty Automatlng the training of machlne-learnlng systems could eI [ AN < 2,708 followers |
make Al much more accessible. DavidNield | Sciencedlert (0 22 May 2017 11:44AM | 4 1227

by WillKnight  January 17,2018
3,139 views | May 28, 2019, 12:20p

Google's AutoML And
BigQuery ML: The Rise Of
One-Click Hyperscale
Machine Learning
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Our research questions

RQ1: Can we develop a variability model that represents
all possible DNN architectures?

RQ2: Can we effectively search the configuration space
and identify well-performing DNN architectures?

RQ3: Does our technique finds DNN architectures that
outperform the state of the art?

23



A straightforward variability model for DNNs

a simple (dense) DL model

Input layer Hidden layer Output laye

a naive feature model

DNN_Classification_Software |

; — . ’ . ""»._‘:. .
v Learning_fomponent | | Classification_Component | | ML_Framework

—— . ) ; ' e "{") )
| Train | | Test | | Predict | | Explain |

; ..—-"" ; ‘ B, )
| Dataset | Architecture | | Cost_Function

Hand_Picked_Dataset | | Generated Datafet | | Layer | Model |

: MNeuron , Lel‘i'etS SqueézeNeti

insufficient to specify
newer architectures

Legend:

v Mandatory

o Optional

“ Or

+_ Alternative
] Abstract

[] Concrete

(. Collapsed
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Various architectures and hyperparameters

C1: feat C3:f. maps 16@10x10
: feature maps S4:{. maps 16@5x5
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Our DNN configuration pipeline

Our Any Our

Block/Cell configuration Block/Cell
Meta-Model sampler Parser

Trained
models

26



Trained
models

Our
Block/Cell
Parser

Any
configuration
sampler

Our
Block/Cell
Meta-Model

021 ‘T8
uoynoAUc)
9I'1's
uoyN[oAUc)
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L
=g
o
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o Q
Q
[

oberese ‘g ‘g
Burjoog
(adeysyndur) yndug
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Meta-modelling DNNs with “Cells”

Operation 1

Combination

Input 2 (or Zero)

Operation 2

Logical operation

Convolution

~

J

Recurrent

~

|[dentity

Pooling

[ Dense
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Meta-modelling DNNs with “Cells”

Operation 1

Combination

Input 2 (or Zero)

Operation 2

Regularization operation
Pre-merge operation

Dropout

Batch

. Normalisation

Void

7

Activation

Sparsing

Resizing

29



Meta-modelling DNNs with “Cells”

Input 2 (or Zero)

Operation 1 Operation 2

Combination Tensor Merg [ ng

Sum
[ Concat ] \

KeepOne

30



Meta-modelling DNNs with “Cells”

Input 2 (or Zero)

Operation 1 Operation 2

Combination

Cell Connection

[ Skip i Cell ] [Skip i Block]

31



The corresponding variability model

Root ——®Base ——®Training l:

‘anpul

;‘t‘Uutput Legend:
// ¥ Mandatory
] Optional

s, Altemative
| Abstract

f Concrete

( Collapsed

‘Cost_Funclion

|
|
|
|

OBlock_Element_Cell {

|
|
|

1 Block_Element_Cell_Input1_Convolution

—1 Block_Element_Cell_Input1_ldentity

' . Block_Element_Cell_Inputl_Pooling
| | Block_Element_Cell_Inputl_Dense
| 1 Block_Element_Cell_Input2_Convolution

- Block_Element_Cell_Input2_ldentity

@®EBlock_Element_Cell_Input2 *—*— Block_Element_Cell_Input2_Zeros

f Block_Element_Cell_Input2_Pooling
1 Block_Element_Cell_Input2_Dense

Block_Element_Cell_Operation1_Flatten
/ Block_Element_Cell_Operation1_Yoid

— Block_Element_Cell_Operation1_Padding
®EBlock_Element_Cell_Operation1

- Block_Element_Cell_Operation1_BatchNormalization

1 Block_Element_Cell_Operation1_aActivation

Block_Element_Cell_Operation1_Dropout

Block_Element_Cell_Operation2_Flatten

") Block_Element_Cell_Operation2_Yoid

(/" Block_Element_Cell_Operation2_Padding
®Elock_Element_Cell_Operation2
" Block_Element_Cell_Operation2_BatchMNormalization

1 Block_Element_Cell_Operation2_activation

Block_Element_Cell_Operation2_Dropout

\ | Block_Element_Cell_Combination_Concat

‘BIock_EIement_CeII_Combinalion *—*— Block_Element_Cell_Combination_Sum

| 1 Block_Element_Cell_Combination_Product
|

\ | Block_Element_Cell_Dutput_Block

‘Block_Element_Cell_D utput °—*— Block_Element_Cell_Output_Cell

T lock_Element_Cell_Output_Out
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Recreating state of the art architecture
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Experimental settings

» Computational limitations
« Maximum blocks and cells per block set to 5
« Limitation on convolution layers’ filters (128) and dense layers’ neurons (512)
* No batch normalization, padding, concatenation and product operations
* Only one output

« SGD with 0.01 learning rate, no decay, no momentum, batch size of 128 (no optimization)

« Datasets: MNIST (60k+10k images)and CIFAR-10 (50k + 10k images)

* Quality metrics: classification accuracy and efficiency (accuracy divided by number of weights)

34



Original implementation vs ours

1.01 Standard implementation, Training accuracy iiissessssessssasessasrstatasaataes
B Standard implementation, Test accuracy Sph AR
BEm Our implementation, Training accuracy et
0.9 Our implementation, Test accuracy .0
0.8' ..... e®
0.7
>\ ..'
O o
o o
= o’
O
£ 0.67
0.51 : '
0.41
0.3
0 20 40 60 80 100 120 140
Iteration
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Our research questions

RQ1: Can we develop a variability model that represents
all possible DNN architectures?

RQ2: Can we effectively search the configuration space
and identify well-performing DNN architectures?

36
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Our Trained

Our Any
Block/Cell models

Block/Cell configuration

Meta-Model sampler Parser

PLEDGE - A Product Line EDitor and tests GEneration tool - + X
. Configuration Help

) & ®[n]

Feature Model Information

Name: Cellphone Number of CNF constraints: 22 Number of core features: 3
Format: SPLOT Number of features: 11 Number of dead features: 0
Features CNF Constraints
PLEDGE: Rumber Nams e cellphone =
. 1 cellphone Core ! wireless OR cellphone
. . 2 wireless Free !accu_cell OR cellphone
TOOI for Dlve rSIty 3 accu_cell Core ! cellphone OR accu_cell
4 _d'fSpla)é Core ! display OR cellphone
H z SN IEE ! cellphone OR display
based Sal I Ipllng 5 HIEE R e tinfrared OR wireless
7 li_ion Free .
8 ni'mh Free :bl'uetooth OR' wireless
9 ni ca Free .v.sll-reless OR infrared OR bluetooth
10 color Free !|ITIOn OR accu_cell L
il monochrome Free !nimh OR accu_cell
'ni_ca OR accu_cell
taccu_cell OR li_ion OR ni_mh OR
!li_ion OR !ni_mh
'li_ion OR !ni_ca
. . . . 'ni_mh OR !ni_ca
Christopher Henard, Mike Papadakis, Gilles Icolor OR display
Perrouin, Jacques Klein, and Yves Le Traon. ::_onfchrz;e oIR d(i;::lay .
i . . ! display color monochrome |_|
2013. PLEDGE: a product line editor and test e O et ]
generation tool (SPLC 13 Workshops). _r__!‘b'uetooth OR_li fon 1]

Generating products Iteration number 4722 :l



Our
Block/Cell
Meta-Model

Any
configuration

sampler

Our Trained
Block/Cell models
Parser

‘F Keras

TensorFlow

38
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Our technique generates a wide range of architectures

input_1: InputLayer

put_L: InputLay

‘ 074¢c6bab-8B1_C2_Inputl_Convolution: SeparableConv2D

‘ 074¢4377-8B1_C1_Input2_Convolution: DepthwiseConva

batch_normalization_2: BatchNommalization

| 24d6708-5B1_C4_Input2_Convolution: Conv2D ‘ ‘ a4d64aSe-8B1_C1_Tnputl_Convolution: DepthwiseConv2D ‘

add_3: Add

#4d772de-5B2_C3_Input2_Convolution: SeparableCony

/

4d30ff5-§B3_C4_Tnput2_Convolution: Dep

2_d772df-5B2_C3_Combination_Suny: Comv2D ‘

N\ |

| 4dSOfEI-5B3_C4_Inputl_Convolution: Conv2D ‘ batch_normalization_5: BatchNormal

.

a4d51b8-8B3_C2_Inputl_Convolution: Conv2D |

batch_normualization_4: BatchNormalization

l

Rez_addS0ffs-5B3_C4_Combination_Sum: Conv2D ‘

| 4d94655-5B5_C4_Tnput2_Convolution: SeparableConv2D ‘

|

‘ Reg_4do465b-5B3_C4_Combination_Sum: Conv2D |

]

4d96d4e-5B5_CS_Inputl_Convolution: Conv2D ‘

/

batch_normalization_1: BatchNommalization

dropout_1: Dropout

‘ 074¢4376-8B1_(

concatenate_2: Concatenate concatenate_1: Concatenate

I 074c028¢-8B1_C3_Inputl_Convolution: Conv2D ‘

concatenate, ‘oncatenate

| 074cbo9f-8B1_C'S_Input2_Convolution: SeparableConv2D ‘

!

bateh_nommalization_2: BatchNormalization

e

‘ 074d55ce-8B2_C5_Tnputl_Convolution: SeparableConv2D

/

dropout_6: Dropout

\

_Inputl_Convolution: Conv2D |

| 074el6ea-8B3_C5_Input2_Convolution: DepthwiseConv2D

I 074e16€9-8B3_C

Dropout

‘ Reg_074el6ed-8B3_C5_Combination_Concat: ConvZD |

concatenate_7: Concatenate

‘ batch_normalization_8: BatchNonmalization

ea35b67e-8B1_CS_Inputl_Convolution Dq)ﬂm«eCouxm| €a35b67£-8B1_CS_Tnput2_Con

concatenate_2: Concatenate

€a389¢ob-SB3_

|_Input2_Convolution: SeparableConv2D |

/

€a38¢240-8B4_C2_Input

Reg_ea389coe-8B3_C4_Combination_Concat: Conv2D |

~

€a38c23£-8B4_C2_Inputl_Convolution: Conv2D ‘

\

batch_normalization_3: BatchNormalization

concatenate_4: Concatenate

2393867-8B4_CS_Inputl_Convolution:

input_1: TnputL:

72741b6e-8B1_C5_Input2_Convolution: SeparableConv2D |

72741088-8B2_C2_Tuputl_Convolution: SeparableConv2D ‘ ‘ batch_normalization_d: BatchNormalization

dropout_4: Dropout

dropout_3: Dropout

add_2: Add

7276abea-8B2_C5_Tnputl_Convolution: SeparableConv2D |

l

batch_normalization_6: BatchNormalization

727683b6-8B2_C3_Inputl_Convolution: SeparableConv2D |

/

batch_normalization_s: BatchNormalization

/

7276abeb-8B2_C'S_Tnput2_Convolution: DepthwiseC'onv2D |
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: Dropout
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‘ 7276d309-8B4_C1_Inputl_Convolution: Conv2D I | dropout_5: Dropout ‘

N

add_4: Add | 7276£58d-8B4_C4_Input2_Convolution: DepthwiseConv2D

\

| 7276£88¢-8B4_C4_Tnputl_Convolution: Conv2D ‘

\

‘ batch_normalization_7: BatchNormalization

concatenate_4: Concatenate

2083-8B5_C2_Input2_Convolution: DepthwiseConv2D ‘

/

4_Tnputl_Convolution: Conv2D I

batch_normalization_8: BatchNormalization

concatenate_5: Concatenate




... with diverse accuracy

1000 1000

800 800
600 600

400

Number of configurations
Number of configurations

200

0 40 60 100 [ 20 30
Accuracy % Accuracy %

(a) On MNIST (b) On Cifar-10

Fig. 7. Distribution of the 1,000 generated architectures over all percentages of accuracy on two datasets. Any point (x, y) of the
graph denotes that y architectures achieve an accuracy lower than x%.
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... and with diverse size

1.0
it 1 otk TAANI A g f Vet 3 B 0.5
0.8 ’ s o N . ., .
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(a) On MNIST (b) On Cifar-10

Fig. 8. Distribution of the accuracy and size of 1,000 generated architectures. The size is given in terms of number of trainable weights
of the architectures. By sampling a diverse set of configurations (in terms of feature differences), our technique is able to generate
architectures with a wide range of sizes an few thousands to millions of weights. Moreover, we observe that architectures with high

accuracy are not necessarily the ones with the largest size, while architectures performing poorly are found in all size ranges.
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Our research questions

RQ1: Can we develop a variability model that represents
all possible DNN architectures?

RQ2: Can we effectively search the configuration space
and identify well-performing DNN architectures?

RQ3: Does our technique finds DNN architectures that
outperform the state of the art?

42



FeatureNet vs. SotA architectures * (MNIST)

Table 1: Accuracy, size, and efficiency of LeNet5, SqueezeNet
and our best sampled architectures, with a 12-epoch train-
ing, on MNIST (top part) and CIFAR-10 (bottom part).

Dataset || Architecture | Accuracy Size | Efficiency

MNIST LeNe 97.14% 545546 1.78

1,000 architectures To 97.74% | 365194 2.68
VORI SrepHectines To 97.65% | 570218 1.71
100 smaller architectures TO 83 > 92 31% 43578 21.18
SqueezeNet 43.67% | 858154 0.51

CIFAR-10 LeNet5 49.13% 868406 057

Top S1 52.77% | 2494858 .zl

Top S2 57.79% 862646 0.67

Top S3 37.44% 38842 0.64

SqueezeNet 17.96% | 876970 0.51
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FeatureNet vs. SotA architectures * (CIFAR-10)

Table 2: Accuracy of the 10 best architectures from S1,
LeNet5 and SqueezeNet on CIFAR-10 and at 12, 300 and 600
training epochs. Architectures are ordered by descending or-
der of accuracy at 600 epochs. * indicates shortened training.

Architecture Size (12) (300) (600)
#063 0.45M | 48.25% | 74.28% 74.74%

#203 0.17M | 52.64% | 64.55% 65.25%

#161 3.62M | 48.57% | 64.46% 65.24%

#477 2.49M | 52.77% | 63.43% 64.25%

=4 15.73M | 49.97% | 62.40% 62.80%

#143 12.68M | 51.37% | 60.46% 60.17%
LeNet5 0.87M | 49.13% | 59.42% 59.26%
#634 1.43M | 51.11% | 59.76% | * 59.06%

#936 0.04M | 48.92% | 54.26% 56.33%

#595 | 134.22M | 52.16% | 52.64% | * 53.64%
SqueezeNet 0.88M | 17.96% | 46.17% | 49.69%
#059 31.51M 51.9% | 52.10% 49.47%

44



Variability in performance
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vs. other NAS methods

On Cifar-10: NAS technique

But FeatureNet:
« Deals only with the architectures, others also consider:
« Training optimization
« Data Augmentation
» Is more efficient:
 our full search took less than 1 GPU day
» NasNet requires hundreds to thousands of GPU days
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Moving ahead
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Moving ahead: improved search

v

Initial population

v

Feature

Model
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Current process
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Robustness

{ Accuracy
Robustness

Selection: ELITIST /
PARETO
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Moving ahead: improved search

Feature
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Evolution:

1/ Select N best individuals

2/ Convert them into Feature models (constrain blocks & cells nature)
3/ Lift random constraints (y%) to generate lighter Feature Models

4/ Feed FMs to PLEDGE. Build new products from each

5/ Restart the evolution process

PLEDGE Selection: ELITIST /
PARETO

49



Adversarial Robustness in Multi-Task Learning:
Promises and lllusions

Salah Ghamizi, Maxime Cordy,
Mike Papadakis, Yves Le Traon



Reusability, adaptability, and exploration (in ML)
Multi-task learning

Shared
Layers

Task-specific
Layers

| ||| Task1

y

x —p . O —p - Task 2

Bd Task 3

Kim-Han Thung and Chong-Yaw Wee. “A brief review on multi-task learning”, Multimedia Tools and Applications. Volume 77, pages 29705-29725, (2018).



Machine learning robustness (evasion attacks)

Original example Small adversarial noise Adversarial example

What humans still see

ML predicts:
“Panda”
(80% confidence)
What ML predicts: “Gibbon”
(99% confidence)
"Explaining and Harnessing Adversarial Examples", Goodfelow et al., ICLR 2015. Gibbon
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Principles of evasion attacks

Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

High

loss Objective: for x find §

v With £(x) # f(x + 8)

v With L,(x,x + §) <€

By solving the optimization problem:

argmax L(x
4

0,Y)

oae s.t. ||0]]p, < e
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Evasion attacks in multi-task learning

An attacker seeks the perturbation ¢ that will maximize the
joint loss function of the attacked tasks — 1.e. the summed
loss, within a p-norm bounded distance e.

argmax .Z;(z + d,y;) s.t. [[6]], < e argmax £ (z + 4,9) s.t. [0, <e
5 5

Single-task adversarial attacks Multi-task adversarial attacks
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Does learning multiple tasks increase robustness?

Multitask Learning Strengthens
Adversarial Robustness

Chengzhi Mao, Amogh Gupta*, Vikram Nitin*,
Baishakhi Ray, Shuran Song, Junfeng Yang, and Carl Vondrick

Columbia University, New York, NY, USA
mcz,rayb,shurans, junfeng,vondrick@cs.columbia.edu,
ag4202,vikram.nitin@columbia.edu

Abstract. Although deep networks achieve strong accuracy on a range
of computer vision benchmarks, they remain vulnerable to adversarial
attacks, where imperceptible input perturbations fool the network. We
present both theoretical and empirical analyses that connect the adver-
sarial robustness of a model to the number of tasks that it is trained
on. Experiments on two datasets show that attack difficulty increases as
the number of target tasks increase. Moreover, our results suggest that
when models are trained on multiple tasks at once, they become more
robust to adversarial attacks on individual tasks. While adversarial de-
fense remains an open challenge, our results suggest that deep networks
are vulnerable partly because they are trained on too few tasks.

Keywords: Multitask Learning, Adversarial Robustness

Shared
Layers

accuracy ++

robustness ++

Task-specific
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L | ... Task 1
Bd B Task 2
Bd = Task 3
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Does learning multiple tasks increase robustness?

covariance
constant wrt. E

i—1 Cov(r;,r;)
] K. \/ M Z Z =1 Cov(r;, r,,)\
0, L

IE
/ number of tasks

average increase of task losses

Conclusion: Robustness increases more as
« more tasks are learnt
 tasks are less correlated.
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Experimental settings

« Dataset: Taskonomy

« Tasks: Semantic Segmentation (s), Depth z-buffer Estimation (d), Depth euclidian Estimation (D),
Surface Normal Prediction (n), SURF Keypoint Detection in 2D (k) and 3D (K), Canny Edge
Detection (e), Edge Occlusion (E), Principal Curvature (p), Reshading (r) and Auto-Encoders (A)

* Models: ResNet18 + custom task decoder (same as Taskonomy paper)

» Metrics: cross-entropy (segmentation)

« Evasion attack: PGD (25 steps, step size = 2/255, e = 8/255)
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Is the robustness increase generalized?

Auxihary — S d D n

Single

S 0.82 0.86 0.97 0.96
d 5.74 5.61 5.28 6.88
D 5.93 6.14 6.4 7.12
n 7.43 9.48 8.93  10.52
E | 1293 19.29 1844 15.16

0.93
6.41
8.31
9.08
22.57

Adversarial vulnerability of a single main task after adding
an auxiliary task (lower is better).

Diagonal elements represent models with a single task.
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Marginal vulnerability of multi-task models

Adversarial vulnerability

101 1

100 1

10711
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—+— (4) d-dD-dDE-sdDE-sdDEn
—+— (5) n-Dn-DEn-dDEn-sdDEn

| —— (6) E-En-dEn-dDEn-sdDEn

S

Number of tasks

60



Marginal vulnerability of multi-task models

101 1

>
% Combination
g —=— (1) D-DE-DEn-dDEn-sdDEn
k= —o— (2) n-sn-snD-sdDn-sdDEn
3 10° 1 —+— (3) s-sd-sdn-sdDn-sdDEn
s —+— (4) d-dD-dDE-sdDE-sdDEn
A —— (5) n-Dn-DEn-dDEn-sdDEn
E — —— (6) E-En-dEn-dDEn-sdDEn
< — — /

1011 "///

1 ' 2 ' 3 ' a

Number of tasks

61



Marginal vulnerability of multi-task models
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New theorem

vulnerability of the new task

__ IR

ANE[0L'] < € (Eg[| rnvya [|] + max Egf|| rs |]])

/ TN

average loss increase

after adding task N+1 vulnerability of the

most vulnerable previous task

Conclusion: Robustness after addning a new task depends on
« the intrinsic vulnerability of the new task
« the most vulnerable previous task
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Generalization to weighted tasks

T ™

ANE[0L' ) <e- (N +1) wnt1Eg]|| rv+1 |||+

N - ,max w;EL[|| rs |[]])

N

learning weight of task i

Conclusion: appropriate task weighting can increase robustness!
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Conclusio
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Is the robustness increase generalized?
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Adversarial vulnerability of a single main task after adding

an auxiliary task (lower is better).

Diagonal elements represent models with a single task.
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