
JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

From Decision Models To User-Guiding
Configurators Using SMT

Maximilian Heisinger, Florian Piminger, Martina Seidl
Institute for Symbolic AI

https://jku.at/

Introduction & Background

Industry partner has a big legacy system we call PropDM that gives us exports in DMX

(proprietary XML schema).

They want to shift their CTO to ETO ratio to be more effective

Couldn’t do it, as PropDM is more similar to a programming environment than to a
variability model.

Configuring this is more like generating test data for software.

2024-02-07 2/13

Introduction & Background

Industry partner has a big legacy system we call PropDM that gives us exports in DMX

(proprietary XML schema).

They want to shift their CTO to ETO ratio to be more effective

Couldn’t do it, as PropDM is more similar to a programming environment than to a
variability model.

Configuring this is more like generating test data for software.

2024-02-07 2/13

Introduction & Background

Industry partner has a big legacy system we call PropDM that gives us exports in DMX

(proprietary XML schema).

They want to shift their CTO to ETO ratio to be more effective

Couldn’t do it, as PropDM is more similar to a programming environment than to a
variability model.

Configuring this is more like generating test data for software.

2024-02-07 2/13

Introduction & Background

Industry partner has a big legacy system we call PropDM that gives us exports in DMX

(proprietary XML schema).

They want to shift their CTO to ETO ratio to be more effective

Couldn’t do it, as PropDM is more similar to a programming environment than to a
variability model.

Configuring this is more like generating test data for software.

2024-02-07 2/13

What are we dealing with?

Var1 Var2 Action 1 Action 2
> 10 CP 12* Var1 = 5
= 10 CP 13* Var3 = 20
= 10 Var2 = 20 Var3 = 40

def dg1(v):
if v['Var1'] > 10 and re.match('12.*', v['Var2']): v['Var1'] = 5
elif v['Var1'] == 10 and re.match('13.*', v['Var2']): v['Var3'] = 20
elif v['Var1'] == 10:

v['Var2'] = 20
v['Var3'] = 40

2024-02-07 3/13

Mapping to Decision Models and to our Contribution

We describe PropDM in terms of Decision Models, as this is the closest from the
literature. Differences to the literature:s No decision variables, instead all variables global.s Every variable may be overridden at any point.s Peculiarities of PropDM: GOTOs, special variables, different types of DGs.

We built a user guiding non-linear configurator for this system using our contributions:s An SMT-Encoding of these semantics ands a method of using it to build such a configurator.

2024-02-07 4/13

Mapping to Decision Models and to our Contribution

We describe PropDM in terms of Decision Models, as this is the closest from the
literature. Differences to the literature:s No decision variables, instead all variables global.s Every variable may be overridden at any point.s Peculiarities of PropDM: GOTOs, special variables, different types of DGs.

We built a user guiding non-linear configurator for this system using our contributions:s An SMT-Encoding of these semantics ands a method of using it to build such a configurator.

2024-02-07 4/13

Our DMalizer Framework

DMalizer

Z3
SMT-Solver

PyToDMX

Ruleset
(DMX)

Input Tuples
(CSV)

Ruleset
(Python)

Interactive
Configuration

Config Result
(CSV)

Solution /
Conflict

2024-02-07 5/13

Processing and Transpilation

1. Parsing a DMX file into our IR
2. Optimizing the IR and deducting sorts
3. Transpiling to different languages

DMX IR

Python

SMT

Common
Lisp

Frontend

Backend(s)

Optimizer

2024-02-07 6/13

DMalizer Execution Modes

DMalizer

PythonCommon
Lisp

DM
(DMX)

Figure 1: Transpiling a DM into
Common Lisp or Python

DMalizer

Input
(CSV)

Output
(CSV)

Figure 2: Emulating a run of
PropDM

DMalizer

DM
(DMX)

Output
(CSV)

Z3-Solver

User
Interaction

Figure 3: Interactive Artifact
Configuration

2024-02-07 7/13

DMalizer Execution Modes

DMalizer

PythonCommon
Lisp

DM
(DMX)

Figure 1: Transpiling a DM into
Common Lisp or Python

DMalizer

Input
(CSV)

Output
(CSV)

Figure 2: Emulating a run of
PropDM

DMalizer

DM
(DMX)

Output
(CSV)

Z3-Solver

User
Interaction

Figure 3: Interactive Artifact
Configuration

2024-02-07 7/13

DMalizer Execution Modes

DMalizer

PythonCommon
Lisp

DM
(DMX)

Figure 1: Transpiling a DM into
Common Lisp or Python

DMalizer

Input
(CSV)

Output
(CSV)

Figure 2: Emulating a run of
PropDM

DMalizer

DM
(DMX)

Output
(CSV)

Z3-Solver

User
Interaction

Figure 3: Interactive Artifact
Configuration

2024-02-07 7/13

Decision Models as SMT Formulas

Encoding structure:s Declaring variables in single-static-assignment form (SSA)s Asserting active decision groupss Decisions in ite structures Linking variables (inside and between decision groups)s Inactive implication chains Asserting valuess Calling the solver

2024-02-07 8/13

Decision Models as SMT Formulas

Decisions

(ite (and αi
j pi

j)
(and τ(ai

j) (not αi
j+1) (= Si+1 ai

j (S
i))

(=> αi
j αi

j+1)))

Decision Groups

(and (ite αi
0 αi

1 (not αi
1))

D[i,1] D[i,2] . . . D[i,|DGi |]
(=> (not αi

1) (not αi
2)) (=> (not αi

2) (not αi
3))

. . . (=> (not αi
|DGi |) (not αi

|DGi |+1))
(=> (or (not αi

0) αi
|DGi |+1) (= Si+1 Si)))

2024-02-07 9/13

Bikeshop Decision Model

def RUL_TYPE(v):

if v['TYPE'] == 'city': v['FORK'] = 'no suspension'

def RUL_UPGRADE(v):

if v['TYPE'] == 'gravel' and v['BASKET'] == 'front':

v['ERROR'] = 1

elif v['TYPE'] == 'gravel' and v['BASKET'] == 'front and back':

v['ERROR'] = 1s Variables with only one choice are
implied directlys Gravel choice is not in the Python code
because it implies no fork choice

Type

Fork Fork

city gravel

no suspension

BasketBasket

no
suspensionsuspension

none back

Basket

none backnone front back front
and back upgrade path

2024-02-07 10/13

Decision Models as SMT Formulas

Decisions in ite structure

(ite (and ACTIVE_1 (and (= PRE_TYPE "city")))
(and (not ACTIVE_2)
(and (= PRE_TYPE POST_TYPE)
(= POST_FORK "no suspension")))

(=> ACTIVE_1 ACTIVE_2))

s If decision is active and predicate is true, execute actions Else imply next decision (active implication chain)

2024-02-07 11/13

Decision Models as SMT Formulas

Linking variables inside decision groups

(=> (or (not ACTIVE) ACTIVE_2)
(and (= PRE_TYPE POST_TYPE)
(= PRE_FORK POST_FORK)))

s If decision group is inactive or no matching decision applied, link variables from
last to next state

Inactive implication chain

(and (=> (not ACTIVE_1) (not ACTIVE_2)))

s If first decision is inactive, next decisions are inactive

2024-02-07 12/13

Check it out!

maximaximal.pages.sai.jku.at/vamos24

s SMT encoding for linear decision
modelss Enhance decision models with
non-linear and user-guiding
configurations Scales to (at least) hundreds of
decisions

2024-02-07 13/13

https://maximaximal.pages.sai.jku.at/vamos24/
https://maximaximal.pages.sai.jku.at/vamos24/

